Exam 1
Question
What is the derivative of
f
(
x
)
=
x
7
e
3
.
9
x
, evaluated at
x
=
0
.
51
?
Solution
Using the product rule for
f
(
x
)
=
g
(
x
)
·
h
(
x
)
, where
g
(
x
)
:
=
x
7
and
h
(
x
)
:
=
e
3
.
9
x
, we obtain
f
'
(
x
)
=
[
g
(
x
)
·
h
(
x
)
]
'
=
g
'
(
x
)
·
h
(
x
)
+
g
(
x
)
·
h
'
(
x
)
=
7
x
7
-
1
·
e
3
.
9
x
+
x
7
·
e
3
.
9
x
·
3
.
9
=
e
3
.
9
x
·
(
7
x
6
+
3
.
9
x
7
)
=
e
3
.
9
x
·
x
6
·
(
7
+
3
.
9
x
)
.
Evaluated at
x
=
0
.
51
, the answer is
e
3
.
9
·
0
.
51
·
0
.
51
6
·
(
7
+
3
.
9
·
0
.
51
)
=
1
.
155964
.
Thus, rounded to two digits we have
f
'
(
0
.
51
)
=
1
.
16
.