For the matrix A=(16416−4456−916633−28−4−9−2858). \begin{aligned} A &= \left( \begin{array}{rrrr} 16 & 4 & 16 & -4 \\ 4 & 5 & 6 & -9 \\ 16 & 6 & 33 & -28 \\ -4 & -9 & -28 & 58 \end{array} \right). \end{aligned} compute the matrix L=(ℓij)1≤i,j≤4L = (\ell_{ij})_{1 \leq i,j \leq 4} from the Cholesky decomposition A=LL⊤A = L L^\top.
Which of the following statements are true?
The decomposition yields L=(400012004140−1−4−54) \begin{aligned} L &= \left( \begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 4 & 1 & 4 & 0 \\ -1 & -4 & -5 & 4 \end{array} \right) \end{aligned} and hence: